
1

MOSIX Tutorial

http:// www . MOSIX . org

2

About

This tutorial has 2 parts:
• Part I: for new users. It covers basic tools and operations

such as monitors, how to run and control processes, view
processes and handling unsupported features

• Part II: advanced topics such as freezing processes,
checkpoint & recovery, running a large set of processes,
I/O optimizations, configuration and management and the
programming interface

3

Part I: Basics

• Tools
– mosmon
– mosrun, mosnative
– mosps
– mosmigrate

• Operations
– Initial assignment
– Running Linux

processes

• Encountering
unsupported features

Detailed information about each command
is available in the manual pages:

man mosix | man mosrun | man mosps…

4

Monitors - seeing what is going on

mosmon displays basic information (tty format)
about resources in the local cluster

 To display, type:
 “l” – CPU load (relative)
 “f” – Number of frozen processes
 “m” - Memory (used + free), swap-space (used + free)

– type consecutively
 “d/D” - Dead nodes
 “h” – help for complete list of options

5

mosrun – running MOSIX processes

 To run a program under MOSIX start it with mosrun,
e.g., mosrun myprog

 Such programs can migrate to other nodes
 Example:

> mosrun myprog 1 2 3 (run myprog, possibly with arguments)
 Programs that are not started by mosrun run in native

Linux mode and CANNOT migrate
 A program that is started by mosrun and all its children

remain under the MOSIX discipline
 MOSIX processes (started by mosrun) can use the

mosnative utility to spawn child processes that run in
native Linux mode

6

Example: view the process migration

 Login to any node in a MOSIX cluster

 On one window run mosmon

 On another window start 2 CPU-intensive processes, e.g. the
mostestload program (included in the MOSIX distribution):

>mosrun testload &
>mosrun testload &

 Observe in the moson window how the processes move
across the nodes

 Type moskillall to stop the running processes

7

mosrun – node assignment options

 -r{hostname} – run on this host (node)

 -{a.b.c.d} – run on node with this IP

 -{n} – run on node number n

 -h – run on the home node

 -b – attempt to select the best node

 Examples:
> mosrun –rmos1 myprog (run on node mos1)

> mosrun –b myprog (run on the best node)

> mosrun –3 myprog 1 2 3 (run on node #3, with arg 1 2 3)

8

mosrun – memory specs

 -m{megabytes} – specifies the maximal amount of memory
needed by your program, to prevent migration of processes
to nodes that do not have sufficient free memory

 The -m options also affects the initial assignment (-b flag)

 Example:

> mosrun –m1000 myprog (allows myprog to run only
on nodes with at least 1GB of free memory)

9

mosps – view MOSIX processes

mosps (like ps) provides information about your MOSIX
processes (and many standard ps fields, see the next slide),
including:

 WHERE – where (or in what special state) is your process

 FROM – from where this process came

 ORIGPID – original pid at home node

 FRZ – if frozen why: “A”- auto frozen (due to load);
“M”- manually; “-” – not frozen; “N/A” – can’t be frozen

 NMIGS – number of migrations so far

10

mosps - options

mosps supports most standard ps flags
 Special mosps flags are:
 -I – nodes displayed as IP addresses
 -h – nodes displayed as host names
 -M – display only last component of host name
 -L – show only local processes
 -O – Show only local processes that are away
 -n – display NMIGS
 -V – show only guest processes
 -P – display ORIGPID

11

mosps – example

> mosps –AMn

PID WHERE FROM CLASS FRZ NMIGS TTY CMD

24078 cmos-18 here local - 1 pts/1 mosrun -b mostestload

24081 here here local - 0 pts/1 mosrun -b mostestload

24089 cmos-16 here local - 1 pts/1 mosrun -b mostestload

30115 here here local M 0 pts/1 mosrun mostestload

30253 here mos3 local N/A N/A ? /sbin/remote

12

mosmigrate – control MOSIX processes

 mosmigrate{pid} {node-number | ip-address | host-name} –
move your process to the given node

 mosmigrate{pid} home - request your process to return home
 mosmigrate{pid} freeze – request to freeze your process
 mosmigrate{pid} continue – unfreeze your process
 mosmigrate{pid} checkpoint – request your process to

checkpoint
 mosmigrate{pid} checkstop – request your process to

checkpoint and stop
 mosmigrate{pid} exit – checkpoint your process and exit
For more options, see the mosmigrate manual

13

Encountering unsupported features

Some utilities and libraries use features that are not
supported by MOSIX

If you run a utility and encounter a message such as:
 MOSRUN: Shared memory (MAP_SHARED) not supported

under MOSIX

or

 MOSRUN: system-call ‘futex’ not supported under MOSIX

Try to use the “-e” flag of mosrun to bypass the problem

 Example: instead of mosrun ls -la use mosrun –e ls –la

14

Part II: Advanced topics

• Freezing processes
• Checkpoint/Recovery
• running a large set of

processes
• Before using the multi-

cluster
• I/O optimizations

• What is not supported
• Configuration and

management
• The programming

interface

15

Freezing processes

MOSIX process can be frozen, usually to prevent
memory threshing
 While frozen, the process is still alive but is not

running - its memory image is left on disk
 Frozen processes do not respond to non-fatal signals

 Processes can be frozen in 3 ways:
 Manually – upon user’s request
 When being expeled from a remote node that was reclaimed
 When the local load is higher than configured

16

Freezing - example

 Running a process
 mosrun mostestload –m2

 Finding the process-ID
 mosps

PID WHERE FROM FRZ TTY CMD
1234 here here - pts/0 mosrun mostestload –m2

 Using the migrate command to freeze the process
 mosmigrate 1234 freeze

 Using migrate to “continue” frozen processes
 mosmigrate 1234 continue

17

Checkpoint/recovery

Most CPU-intensive MOSIX processes can be checkpointed,
then recovered from that point
 In a checkpoint, the image of a process is saved to a file
 Processes with open pipes or sockets, or with setuid/setgid

privileges cannot be checkpointed
 Processes that wait indefinitely, e.g. for terminal/pipe/socket

I/O or another process, will only produce a checkpoint once
the wait is over

 The following processes may not run correctly after a recovery:
 Processes that rely on process id or parent-child relations
 Processes that communicate with other processes
 Processes that rely on timers and alarms or cannot afford to lose signals

18

mosrun - how to checkpoint

 -C{base-filename} – specifies file names (with extensions .1, .2, .3,…)
where checkpoints are to be saved

 -N{max} – specifies the maximum number of checkpoints to
produce before re-cycling extensions

 -A{min} – produces a checkpoint every given number of minuts
 Checkpoint can also be triggered by the program itself (see the MOSIX

manual) and by the user (see the migrate manual)
 Example:

> mosrun –C/tmp/myckpt –A20 myprog (create a checkpoint
every 20 minuts to files: /tmp/myckpt.1, /tmp/myckpt.2, …)
> mosrun myprog (whenever the user requests a checkpoint
manually, a checpoint will be written to files: ckpt.{pid}.1,
ckpt.{pid}.2, …)

19

mosrun – how to recover

 Use -I{file} to view the list of files that where used by the process at
the time of checkpoint

 Use -R{file} to recover and continue the program from a given
checkpoint

 With -R{file} you can also use –O{fd1=filename1, fd2=filename2,…} - to use the
given file location(s) per file-descriptor instead of the original location(s)

 Examples:
> mosrun –I/tmp/ckpt.1

Standard Input (0): special file, Read-Write
Standard Output(1): special file, Read-Write
Standard Error (2): special file, Read-Write
File-Descriptor #3: /usr/home/me/tmpfile, offset=1234, Read-Write

> mosrun –R/tmp/ckpt.1 –O3=/user/home/me/oldtmpfile

20

mosrun - running a large set of processes

 The -S{maxjobs} option runs under mosrun multiple
command-lines from the file commands-file
 Command-lines are started in the order they appear

 Each line contains a program and its given mosrun arguments
 Example of a commands-file:

my_program –a1 –if1 –of1
my_program –a2 –if2 –of2
my_program –a3 –if3 –of3

 While the number of command-lines is unlimited, mosrun will
run up to maxjobs command-lines concurrently at any time

 Whenever one process finish, a new line will start

21

Before running processes on the multi-cluster

 Some programs do not perform well on the cluster (multi-cluster) due to
various overheads. To check a specific program, run a sample copy 3-4
times on identical nodes and measure the times, as follows:
 As a regular Linux process (without mosrun)
 As a non-migrated MOSIX process in the local node

 mosrun –h –L …
 As a migrated MOSIX process to a remote node in the local cluster

 mosrun –r<node-name> -L …
 In case of multi-cluster, repeat the last test to a remote node in another cluster

 The running times of the program should increase gradually by few
percents but not significantly
 If this is not the case you should investigate the reasons
 For example: use strace to see if the process is doing I/O in an efficient way (a

reasonable system call rate)

22

I/O considerations

 MOSIX programs that issue a large number of
system-calls or perform intensive I/O relative to
the computation are expensive because those
operations are emulated

 When a process is running in a remote node, there
is also network overhead of sending those
operations to the home-node

 Such processes will automatically be migrated
back to the home-node, to eliminate the
communication overhead

23

Improving the I/O performance

 “gettimeofday()” can be a very frequent system-call: use
the “-t” flag to get the time from the hosting node instead
of the home-node

 Try to perform I/O in larger chunks (less system-calls)

 Avoid unnecessary system-calls (such as “lseek()” - use
"pread/pwrite“ instead)

 The "-c" flag prevents bringing home processes due to
system-calls: it should be used when the I/O phase is
expected to be short. For programs with more complex
patterns of alternating CPU-intensive and I/O periods,
learn about the "-d" option

24

Temporary private files

 Normally files are accessed via the home-node
 In certain cases it is possible to use

Temporary Private Files
 Such private files can be accessed only by the

processes
 When the process migrate, temporary private files

are migrated with it
 Once the process exit, the files are automatically

deleted

25

Example: temporary private files

 mosrun –X/tmp –rmos2 –L testload –f/tmp/big –iosize
100 –write 4 –cpu 1

 In this example the mostestload program writs a file
named /tmp/big in chunks of 4KB up to a size of
100MB

 Since the temporary private files feature is used, the
file access will be performed locally

26

What is not supported

 Shared memory, including files mmap'ed as MAP_SHARED and
SYSV-shm

 The “clone” system-call (causing parent and child processes to share
memory and/or files and/or signals and/or current-directory, etc)

 Mapping special block/character files to memory
 Process tracing (ptrace)
 System calls that are esoteric; recently added; intended for system-

administration; or to support cloning
 Locking memory in core (mlock – has no meaning when a process

migrates)
 The “-e” flag fails MOSRUN unsupported system-calls (with errno

ENOSYS) rather than abort the program when such calls are
encountered. “-w” also produces a warning on stderr

27

What is not supported - example

mos1:~> mosrun ls –la
MOSRUN: Shared memory (MAP_SHARED) not supported under MOSIX

 Mmap with the flag “MAP_SHARED” is not supported
under mosix

 The command “ls –la” will work when using the –e flag of
mosrun (mosrun –e ls –la).

 This is since the –e tells mosrun to replace the
MAP_SHARED with MAP_PRIVATE

 Same goes for the error
 MOSRUN: system-call ‘futex’ not supported under MOSIX

28

Solving problems

 In case of a problem:
 Check with mosmon that the cluster is working
 Run “mossetpe –r” to see the cluster/multi-cluster

configuration
 Run “mosctl status” on the problematic node
 Try sending a process manually with

mosrun –rnode-name program

29

Configuration

 All MOSIX configuration files are kept in the
/etc/mosix directory

 These files can be modified manually
 Or by using the mosconf program which allows

the sysadmin to configure a MOSIX cluster/multi-
cluster by following few basic steps

30

mosctl – reading the MOSIX state

 mosctl status {node-number | ip-address | host-name} -
provides useful information about MOSIX nodes

 mosctl localstatus – provides more information about the
local node

 mosctl whois {node-number} – convert a logical MOSIX
node number to a host name (or IP address if host name
can’t be located)

 mosctl whois {IP-address | host-name} - convert an IP
address or a host name to a logical MOSIX node number

 For explanations of output and more options see the mosctl
manual

31

mosctl - example

> mosctl status
Status: Running Normally
Load: 0.29 (equivalent to about 0.29 CPU processes)
Speed: 10012 units
CPUS: 1
Frozen: 0
Avail: YES
Procs: Running 1 MOSIX processes
Accept: Yes, will welcome processes from here
Memory: Available 903MB/1010MB

32

mosctl localstatus - example

root@mos1:~# mosctl localstatus
Status: Running Normally
Load: 0
Speed: 3333 units
CPUS: 1
Frozen: 0
Avail: YES
Procs: Running 0 MOSIX processes
Accept: Yes, will welcome processes from here
Memory: Available 93MB/249MB
Swap: Available 0.8GB/0.9GB
Daemons:

Master Daemon: Up
MOSIX Daemon : Up
Remote Daemon: Up
Postal Daemon: uo

Guest processes from grid: 0/10

33

mossetpe – view the cluster/multi-cluster configuration

 mossetpe -r lists the nodes in the local cluster

 mossetpe -R lists the nodes in the local cluster and the
multi-cluster

 Important information that may be listed:
 pri={pri} - priority we give to that cluster: the lower the better

 proximate - there is a very fast network connection to those nodes

 outsider - processes of class 0 cannot migrate there

 dontgo - local processes cannot migrate there

 dont_take - not accepting guests from there

34

The MOSIX programming interface

 The MOSIX interface allows the users to control some MOSIX
options from within their programs

 This can be done by accessing special files on the /proc filesystem.

 The files are private to the process

 The files include:
 /proc/self/migrate
 /proc/self/lock
 /proc/self/whereami
 /proc/self/nmigs
 /proc/self/needmem
 /proc/self/clear
 ….

35

Programming interface - examples

 To modify the maximal amount of memory that a
process may require:
 open("/proc/self/needmem", 1|O_CREAT, 1200)

 To lock the program in the current node:
 open("/proc/self/lock", 1|O_CREAT, 1)

 To clear statistics after some phase of the program:
 open("/proc/self/clear", 1|O_CREAT, 1)

 To find where the current process is running now:
 open("/proc/self/whereami", 0)

	Slide Number 1
	About
	Part I: Basics
	Monitors - seeing what is going on
	mosrun – running MOSIX processes
	Example: view the process migration
	mosrun – node assignment options
	mosrun – memory specs
	mosps – view MOSIX processes
	mosps - options
	mosps – example
	mosmigrate – control MOSIX processes
	Encountering unsupported features
	Part II: Advanced topics
	Freezing processes
	Freezing - example	
	Checkpoint/recovery
	mosrun - how to checkpoint
	mosrun – how to recover
	mosrun - running a large set of processes
	Before running processes on the multi-cluster
	I/O considerations
	Improving the I/O performance
	Temporary private files
	Example: temporary private files
	What is not supported
	What is not supported - example
	Solving problems
	Configuration
	mosctl – reading the MOSIX state
	mosctl - example
	mosctl localstatus - example
	mossetpe – view the cluster/multi-cluster configuration
	The MOSIX programming interface
	Programming interface - examples	

