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About

This tutorial has 2 parts:
• Part I: for new users. It covers basic tools and operations 

such as monitors,  how to run and control processes, view 
processes and handling unsupported features

• Part II: advanced topics such as freezing processes, 
checkpoint & recovery, running a large set of processes, 
I/O optimizations, configuration and management and the 
programming interface
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Part I: Basics

• Tools
– mosmon
– mosrun, mosnative
– mosps
– mosmigrate

• Operations
– Initial assignment
– Running Linux 

processes

• Encountering 
unsupported features 

Detailed information about each command 
is available in the manual pages:

man mosix | man mosrun | man mosps…
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Monitors - seeing what is going on

mosmon  displays basic information (tty format) 
about resources in the local cluster

 To display, type:
 “l” – CPU load (relative)
 “f” – Number of frozen processes
 “m” - Memory (used + free),  swap-space (used + free) 

– type consecutively
 “d/D” - Dead nodes
 “h” – help for complete list of options
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mosrun – running MOSIX processes

 To run a program under MOSIX start it with mosrun, 
e.g., mosrun myprog

 Such programs can migrate to other nodes
 Example:

> mosrun  myprog 1 2 3 (run myprog, possibly with arguments)
 Programs that are not started by mosrun run in native 

Linux mode and CANNOT migrate 
 A program that is started by mosrun and all its children 

remain under the MOSIX discipline
 MOSIX processes (started by mosrun) can use the 

mosnative utility to spawn child processes that run in 
native Linux mode
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Example: view the process migration

 Login to any node in a MOSIX cluster

 On one window run mosmon

 On another window start 2 CPU-intensive processes, e.g. the 
mostestload program (included in the MOSIX distribution):

>mosrun testload &
>mosrun testload  &

 Observe in the moson window how the processes  move 
across the nodes

 Type moskillall to stop the running processes
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mosrun – node assignment options

 -r{hostname} – run on this host (node)

 -{a.b.c.d} – run on node with this IP

 -{n} – run on node number n

 -h – run on the home node

 -b – attempt to select the best node

 Examples:
> mosrun –rmos1 myprog   (run on node mos1)

> mosrun –b myprog           (run on the best node)

> mosrun –3 myprog 1 2 3  (run on node #3, with arg 1 2 3)
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mosrun – memory specs

 -m{megabytes} – specifies the maximal amount of memory 
needed by your program, to prevent migration of processes 
to nodes that do not have sufficient free memory

 The  -m options also affects the initial assignment (-b flag)

 Example:

> mosrun  –m1000 myprog  (allows myprog to run only 
on nodes with at least 1GB of free memory)



9

mosps – view MOSIX processes

mosps (like ps) provides information about your MOSIX 
processes (and many standard ps fields, see the next slide), 
including:

 WHERE  – where (or in what special state) is your process

 FROM   – from where this process came

 ORIGPID – original pid at home node

 FRZ   – if frozen why: “A”- auto frozen (due to load); 
“M”- manually;  “-” – not frozen;  “N/A” – can’t be frozen

 NMIGS – number of migrations so far
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mosps - options

mosps supports most standard ps flags
 Special mosps flags are:
 -I  – nodes displayed as IP addresses
 -h  – nodes displayed as host names
 -M – display only last component of host name
 -L – show only local processes
 -O – Show only local processes that are away
 -n – display NMIGS
 -V  – show only guest processes
 -P – display ORIGPID 
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mosps – example

> mosps –AMn

PID   WHERE  FROM CLASS FRZ NMIGS TTY         CMD

24078 cmos-18 here local  - 1   pts/1 mosrun -b mostestload

24081 here    here local  - 0   pts/1 mosrun -b mostestload

24089 cmos-16 here local  - 1   pts/1 mosrun -b mostestload

30115 here    here local  M    0   pts/1 mosrun mostestload

30253 here    mos3 local N/A  N/A  ?     /sbin/remote
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mosmigrate – control MOSIX processes

 mosmigrate{pid} {node-number | ip-address | host-name} – 
move your process to the given node

 mosmigrate{pid} home - request your process to return home
 mosmigrate{pid} freeze – request to freeze your process
 mosmigrate{pid} continue – unfreeze your process
 mosmigrate{pid} checkpoint – request your process to 

checkpoint
 mosmigrate{pid} checkstop – request your process to 

checkpoint and stop
 mosmigrate{pid} exit – checkpoint your process and exit
For more options, see the mosmigrate manual
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Encountering unsupported features

Some utilities and libraries use features that are not 
supported by MOSIX

If you run a utility and encounter a message such as: 
 MOSRUN: Shared memory (MAP_SHARED) not supported 

under MOSIX

or

 MOSRUN: system-call ‘futex’ not supported under MOSIX

Try to use the “-e” flag of mosrun to bypass the problem

 Example: instead of mosrun ls -la use mosrun –e ls –la
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Part II: Advanced topics

• Freezing processes
• Checkpoint/Recovery
• running a large set of 

processes
• Before using the multi- 

cluster
• I/O optimizations

• What is not supported
• Configuration and 

management
• The programming 

interface



15

Freezing processes

MOSIX process can be frozen, usually to prevent 
memory threshing
 While frozen, the process is still alive but is not 

running - its memory image is left on disk
 Frozen processes do not respond to non-fatal signals

 Processes can be frozen in 3 ways:
 Manually – upon user’s request
 When being expeled from a remote node that was reclaimed
 When the local load is higher than configured
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Freezing - example

 Running a process
 mosrun mostestload –m2

 Finding the process-ID
 mosps 

PID WHERE  FROM FRZ TTY    CMD
1234      here           here        - pts/0     mosrun mostestload –m2

 Using the migrate command to freeze the process
 mosmigrate  1234 freeze

 Using migrate to “continue” frozen processes
 mosmigrate 1234 continue
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Checkpoint/recovery

Most CPU-intensive MOSIX processes can be checkpointed, 
then recovered from that point
 In a checkpoint, the image of a process is saved to a file
 Processes with open pipes or sockets, or with setuid/setgid 

privileges cannot be checkpointed
 Processes that wait indefinitely, e.g. for terminal/pipe/socket 

I/O or another process, will only produce a checkpoint once 
the wait is over

 The following processes may not run correctly after a recovery:
 Processes that rely on process id or parent-child relations
 Processes that communicate with other processes
 Processes that rely on timers and alarms or cannot afford to lose signals
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mosrun - how to checkpoint

 -C{base-filename} – specifies file names (with extensions .1, .2, .3,…)  
where checkpoints are to be saved

 -N{max} – specifies the maximum number of checkpoints to 
produce before re-cycling extensions

 -A{min} – produces a checkpoint every given number of minuts
 Checkpoint can also be triggered by the program itself (see the MOSIX 

manual) and by the user (see the migrate manual)
 Example:

> mosrun –C/tmp/myckpt –A20  myprog (create a checkpoint 
every 20 minuts to files: /tmp/myckpt.1, /tmp/myckpt.2, … )
> mosrun myprog  (whenever the user requests a checkpoint 
manually, a checpoint will be written to files: ckpt.{pid}.1, 
ckpt.{pid}.2, … )
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mosrun – how to recover

 Use -I{file} to view the list of files that where used by the process at 
the time of checkpoint

 Use  -R{file} to recover and continue the program from a given 
checkpoint

 With -R{file} you can also use  –O{fd1=filename1, fd2=filename2,…} - to use the 
given file location(s) per file-descriptor instead of the original location(s)

 Examples:
> mosrun –I/tmp/ckpt.1

Standard Input (0): special file, Read-Write
Standard Output(1): special file, Read-Write
Standard Error (2): special file, Read-Write
File-Descriptor #3: /usr/home/me/tmpfile, offset=1234, Read-Write

> mosrun –R/tmp/ckpt.1 –O3=/user/home/me/oldtmpfile
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mosrun - running a large set of processes

 The -S{maxjobs}  option runs under mosrun multiple 
command-lines from the file commands-file
 Command-lines are started in the order they appear

 Each line contains a program and its given mosrun arguments
 Example of a commands-file:

my_program –a1 –if1 –of1
my_program –a2 –if2 –of2
my_program –a3 –if3 –of3

 While the number of command-lines is unlimited, mosrun will 
run up to maxjobs command-lines concurrently at any time

 Whenever one process finish, a new line will start
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Before running processes on the multi-cluster

 Some programs do not perform well on the cluster (multi-cluster) due to 
various overheads. To check a specific program, run a sample copy 3-4  
times on identical nodes and measure the times, as follows:
 As a regular Linux process (without mosrun)
 As a non-migrated MOSIX process  in the local node

 mosrun –h –L …
 As a migrated MOSIX process to a remote node in the local cluster

 mosrun –r<node-name> -L …
 In case of multi-cluster, repeat the last test to a remote node in another cluster

 The running times of the program should increase gradually by few 
percents but not significantly
 If this is not the case you should investigate the reasons   
 For example: use strace to see if the process is doing I/O in an efficient way (a 

reasonable system call rate)
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I/O considerations

 MOSIX programs that issue a large number of 
system-calls or perform intensive I/O relative to 
the computation are expensive because those 
operations are emulated

 When a process is running in a remote node, there 
is also network overhead of sending those 
operations to the home-node

 Such processes will automatically be migrated 
back to the home-node, to eliminate the 
communication overhead
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Improving the I/O performance

 “gettimeofday()” can be a very frequent system-call: use 
the “-t” flag to get the time from the hosting node instead 
of the home-node

 Try to perform I/O in larger chunks (less system-calls)

 Avoid unnecessary system-calls (such as “lseek()” - use   
"pread/pwrite“ instead)

 The "-c" flag prevents bringing home processes due to 
system-calls: it should be used when the I/O phase is 
expected to be short.  For programs with more complex 
patterns of alternating CPU-intensive and I/O periods, 
learn about the "-d" option
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Temporary private files

 Normally files are accessed via the home-node
 In certain cases it is possible to use 

Temporary Private Files
 Such private files can be accessed only by the 

processes
 When the process migrate,  temporary private files 

are migrated with it
 Once the process exit, the files are automatically 

deleted 
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Example: temporary private files 

 mosrun –X/tmp –rmos2 –L testload –f/tmp/big –iosize 
100 –write 4 –cpu 1

 In this example the mostestload program writs a file 
named /tmp/big in chunks of 4KB up to a size of 
100MB

 Since the temporary private files feature is used, the 
file access will be performed locally
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What is not supported

 Shared memory, including files mmap'ed as MAP_SHARED and 
SYSV-shm

 The “clone” system-call (causing parent and child processes to share 
memory and/or files and/or signals and/or current-directory, etc)

 Mapping special block/character files to memory
 Process tracing (ptrace)
 System calls that are esoteric; recently added; intended for system- 

administration; or to support cloning
 Locking memory in core (mlock – has no meaning when a process 

migrates)
 The “-e” flag fails MOSRUN unsupported system-calls (with errno 

ENOSYS) rather than abort the program when such calls are 
encountered.  “-w” also produces a warning on stderr



27

What is not supported - example

mos1:~> mosrun ls –la 
MOSRUN: Shared memory (MAP_SHARED) not supported under MOSIX

 Mmap with the flag “MAP_SHARED” is not supported 
under mosix

 The command “ls –la” will work when using the –e flag of 
mosrun (mosrun –e ls –la).

 This is since the –e tells mosrun to replace the 
MAP_SHARED with MAP_PRIVATE 

 Same goes for the error 
 MOSRUN: system-call ‘futex’ not supported under MOSIX
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Solving  problems

 In case of a problem:
 Check with mosmon that the cluster is working
 Run “mossetpe –r” to see the cluster/multi-cluster 

configuration
 Run “mosctl status” on the problematic node
 Try sending a process manually with 

mosrun –rnode-name program
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Configuration

 All MOSIX configuration files are kept in the 
/etc/mosix directory

 These files can be modified manually
 Or by using the mosconf program which allows 

the sysadmin to configure a MOSIX cluster/multi- 
cluster by following few basic steps 
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mosctl – reading the MOSIX state

 mosctl status {node-number | ip-address | host-name} - 
provides useful information about MOSIX nodes

 mosctl localstatus – provides more information about the 
local node

 mosctl whois {node-number} – convert a logical MOSIX 
node number to a host name (or IP address if host name 
can’t be located)

 mosctl whois {IP-address | host-name} - convert an IP 
address or a host name to a  logical MOSIX node number

 For explanations of output and more options see the mosctl 
manual
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mosctl - example

> mosctl status
Status: Running Normally
Load:   0.29 (equivalent to about 0.29 CPU processes)
Speed:  10012 units
CPUS:   1
Frozen: 0
Avail:  YES
Procs:  Running 1 MOSIX processes
Accept: Yes, will welcome processes from here
Memory: Available 903MB/1010MB
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mosctl localstatus - example

root@mos1:~# mosctl localstatus
Status: Running Normally
Load:   0
Speed:  3333 units
CPUS:   1
Frozen: 0
Avail:  YES
Procs:  Running 0 MOSIX processes
Accept: Yes, will welcome processes from here
Memory: Available 93MB/249MB
Swap:   Available 0.8GB/0.9GB
Daemons:

Master Daemon: Up
MOSIX Daemon : Up
Remote Daemon: Up
Postal Daemon: uo

Guest processes from grid: 0/10
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mossetpe – view the cluster/multi-cluster configuration

 mossetpe -r lists the nodes in the local cluster

 mossetpe -R lists the nodes in the local cluster and the 
multi-cluster

 Important information that may be listed:
 pri={pri} - priority we give to that cluster: the lower the better

 proximate - there is a very fast network connection to those nodes

 outsider - processes of class 0 cannot migrate there

 dontgo - local processes cannot migrate there

 dont_take - not accepting guests from there
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The MOSIX programming interface

 The MOSIX interface allows the users to control some MOSIX 
options from within their programs

 This can be done by accessing special files on the /proc filesystem.

 The files are private to the process

 The files include:
 /proc/self/migrate
 /proc/self/lock
 /proc/self/whereami
 /proc/self/nmigs
 /proc/self/needmem
 /proc/self/clear
 ….
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Programming interface - examples

 To modify the maximal amount of memory that a 
process may require:
 open("/proc/self/needmem", 1|O_CREAT, 1200)

 To lock the program in the current node:
 open("/proc/self/lock", 1|O_CREAT, 1)

 To clear statistics after some phase of the program:
 open("/proc/self/clear", 1|O_CREAT, 1)

 To find where the current process is running now:
 open("/proc/self/whereami", 0)


	Slide Number 1
	About
	Part I: Basics
	Monitors -  seeing what is going on
	mosrun – running MOSIX processes
	Example: view the process migration
	mosrun – node assignment options
	mosrun – memory specs
	mosps – view MOSIX processes
	mosps - options
	mosps – example
	mosmigrate – control MOSIX processes
	Encountering unsupported features
	Part II: Advanced topics
	Freezing processes
	Freezing - example	
	Checkpoint/recovery
	mosrun - how to checkpoint
	mosrun – how to recover
	mosrun - running a large set of processes
	Before running processes on the multi-cluster
	I/O considerations
	Improving the I/O performance
	Temporary private files
	Example: temporary private files 
	What is not supported
	What is not supported - example
	Solving  problems
	Configuration
	mosctl – reading the MOSIX state
	mosctl - example
	mosctl localstatus - example
	mossetpe – view the cluster/multi-cluster configuration
	The MOSIX programming interface
	Programming interface - examples	

